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Assessing receptive vocabulary using
state‑of‑the‑art natural language processing
techniques

Scott Crossley and Langdon Holmes
Vanderbilt University, United States

Semantic embedding approaches commonly used in natural language
processing such as transformer models have rarely been used to examine L2
lexical knowledge. Importantly, their performance has not been contrasted
with more traditional annotation approaches to lexical knowledge. This
study used NLP techniques related to lexical annotations and semantic
embedding approaches to model the receptive vocabulary of L2 learners
based on their lexical production during a writing task. The goal of the
study is to examine the strengths and weaknesses of both approaches in
understanding L2 lexical knowledge. Findings indicate that transformer
approaches based on semantic embeddings outperform linguistic
annotations and Word2vec models in predicting L2 learners’ vocabulary
scores. The findings help to support the strength and accuracy of semantic-
embedding approaches as well as their generalizability across tasks when
compared to linguistic feature models. Limitations to semantic-embedding
approaches, especially interpretability, are discussed.

Keywords: natural language processing, corpus linguistics, lexical
knowledge, Doc2Vec, BERT, word-embeddings, lexical annotations

1. Introduction

Exploring lexical knowledge on the part of second language (L2) learners can
provide researchers and practitioners with information about learners’ cognitive
development, learners’ lexical processing, and assessment principles. L2 lexical
knowledge has been investigated through a variety of methods including survey
items, vocabulary assessments, behavioral studies, and corpus analysis (Berger
et al. 2019; Kyle et al., 2018; Lemhöfer et al., 2008; Milton, 2009). Over time, cor-
pus approaches to understanding L2 lexical knowledge, especially when combined
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with natural language processing (NLP) techniques, have become common place
(Crossley, Skalicky, et al., 2019; Kyle & Crossley, 2016). Such approaches rely on
using NLP techniques to automatically annotate learner corpora for specific lexi-
cal features such as word length, word frequency, or word concreteness and then
make associations between these annotations and variables related to lexical
knowledge include vocabulary test scores (Hashimoto & Egbert, 2019), human
ratings of vocabulary knowledge (Crossley, Salsbury, et al., 2011a, 2011b), or stu-
dent grade level (Kerz et al., 2021). Additionally, lexical annotations can be used to
track lexical development over time (Crossley & Skalicky, 2019).

The majority of NLP annotation techniques measure lexical knowledge at
the word or phrasal level. Early studies focused on word length and word fre-
quency (Conrad, 2005; Grant & Ginther, 2000) while later studies began to anno-
tate words to include features such as phonological neighbors, lexical response
time, number of word associations, age of acquisition, and word concreteness
(Kyle & Crossley, 2015; Kyle et al., 2018). Phrasal annotations were also introduced
that measured associational strength, frequency, and range (Garner & Crossley,
2018; Garner et al., 2018). Annotations of lexical items has remained state of the
art for measuring L2 lexical items since the late 1990s with studies demonstrat-
ing the strength of these features to predict vocabulary knowledge and develop-
ment (Crossley & Kyle, 2022; Laufer & Nation, 1995; Meurers, 2012, 2021). Such
studies provided researchers and practitioners with a wealth of knowledge about
how the lexicon develops in L2 learners, how words are processed and stored, and
how assessments can be improved and validated. However, the lexical annotations
described above generally only examine word properties and not word meaning
(i.e., semantics).

Outside of L2 research, computational linguists have continued to refine nat-
ural language processing techniques, and research has advanced from simply
annotating linguistic features found in language samples to modeling language
semantics using continuous vector representations for words derived from large
data sets. At a practical level, such approaches examine the distributional repre-
sentations of words in texts with the understanding that words with similar mean-
ings tend to occur in similar contexts. These approaches embed words in a vector
space to compute semantic relationships among words. Seminal work on seman-
tic vector representations date back to the late 1990s with the development of
latent semantic analysis (LSA, Landauer et al., 2007), which uses dimensional-
ity reduction techniques to condense a large word by document co-occurrence
matrix derived from a corpus of texts into a lower dimensional space. LSA trans-
forms the words of a document-term matrix into a vector, often of length 300.
It allows for the semantic similarity between two words within a corpus to be
measured by calculating the cosine of the angle of the two words’ vectors. LSA

[2] Scott Crossley and Langdon Holmes
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and related approaches have been widely applied in information retrieval, sense
disambiguation, and topic modelling. The simple word-embedding approaches
found in LSA have been augmented in Word2vec models that generate static rep-
resentations of words that weigh distributions based on surrounding words (as
compared to an entire text). Word2vec uses a shallow neural network to develop
these representations (Mikolov et al., 2013). Even newer embedding approaches
based on transformer models use much larger neural networks with an archi-
tecture called attention (Vaswani et al., 2017). These transformer models develop
contextual representations of words, such that the same orthographic form will
have a different embedding depending on its context. They also require magni-
tudes more training data and processing power. Nonetheless, transformer models
(also known as large language models) have become state of the art in NLP due to
their ability to outperform other methods in a variety of tasks.

However, semantic embedding approaches, including Word2vec models and
especially transformer models, have rarely been used to examine L2 lexical knowl-
edge. One would expect that embedding approaches, which model the underlying
semantics of a language, would perform well at predicting or classifying L2 lexical
knowledge, especially when compared to NLP techniques that annotate lexical
features of texts (e.g., frequency, phonological neighbors, lexical response times,
and word concreteness). Thus, this study investigates the predictive strength of
lexical annotations and embeddings derived from L2 student writing to model
receptive vocabulary scores. The goal of the study is to examine the strength of
using semantic models of lexical production compared to more traditional lex-
ical annotations of production to better understand L2 lexical knowledge. Our
hypothesis is that models of lexical production that are based on language seman-
tics will outperform models based on lexical feature.

2. Literature review

2.1 Lexical knowledge

Lexical knowledge is generally understood through global trait models that have
traditionally examined two dimensions: (1) breadth of lexical knowledge or lexical
size and (2) depth of lexical knowledge which measures the manner and degree
to which known words are organized (Meara, 1996, 2005a; Read, 1998). Breadth is
generally operationalized through lexical diversity (i.e., the variety of words pro-
duced) or word frequency (i.e., how frequent a word is within a language). Depth
is operationalized to include any measurements that examine the strength of net-
works and/or interactions of links among words (Moghadam et al., 2012) includ-

Assessing receptive vocabulary using state-of-the-art natural language processing techniques [3]
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ing semantic associations and the semantic representations of the word (Nagy &
Scott, 2000).

The two dimensions bifurcate over the notion of knowledge and whether
it is related to knowledge of the entire lexicon (breadth) or is related to the
strength of knowledge for individual words (depth). There are a number of prob-
lems with this binary approach. First, breadth and depth dimensions ignore prop-
erties related to core lexical knowledge like word concreteness, familiarity, and
imageability (Crossley & Skalicky, 2019) which allow for quicker lexical process-
ing or retrieval (Crossley, Salsbury, et al., 2011a, 2011b; Meara, 2005b). Second, it
is also not always clear which lexical features should be assigned to which of the
two dimensions. For instance, word frequency has historically been considered a
measure of breadth of knowledge because learners that produce more infrequent
words should have a larger vocabulary. However, the distributional properties of
words based on frequency also strengthen connection between words and mean-
ings (Ellis, 2002). These connections overlap strongly with depth of lexical knowl-
edge (i.e., the organization of words in the lexicon).

2.2 Measuring L2 lexical knowledge

There are a number of ways to explore lexical knowledge in L2 learners. Tra-
ditional approaches have depended on lexical assessment such as vocabulary
size tests, translation or elicitation, and word association tasks (Milton, 2009).
Behavioral methods that measure L2 learners response times to linguistic stimuli
are also commonly used to assess L2 knowledge (Berger et al., 2019; Crossley &
Skalicky, 2019; Lemhöfer et al., 2008). More recently, the use of NLP driven anno-
tations based on L1 norms1 to examine lexical knowledge have become common
(Crossley, Salsbury, & McNamara, 2009, 2010; Morris & Cobb, 2004).

NLP annotations of lexical features are able to adequately measure both
breadth and depth features of the lexicon as well as core lexical properties. Com-
mon breadth features measured using NLP annotations include lexical variety

1. Arguments have been made in favor of using NLP annotations based on L2 corpora and L2
learner judgments (Oretga, 2016). However, L2-based annotations are not available for many
lexical features and properties (e.g., concreteness, word naming). For those features in which
L1- and L2-based annotations are available, research does not clearly favor one annotation
approach over the other. For example, Monteiro et al. (2020) reported that frequency metrics
based on an L2 corpus outperformed L1-based frequency metrics in predicting L2 writing qual-
ity (although both were predictive); however, a follow up study (Monteiro, 2020) found no
differences. Similarly, Crossley, Skalicky, et al. (2019) reported that L2-based frequency met-
rics were not stronger predictors of L2 development compared to L1-based frequency metrics
(although both were equally predictive).

[4] Scott Crossley and Langdon Holmes
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measures using type-token ratio counts and word frequency measures based on a
variety of corpora like the British National Corpus (BNC Consortium, 2007) and
the Corpus of Contemporary American English (COCA, Davies, 2010). Depth
measures include features related to hypernymy and polysemy derived from
WordNet (Fellbaum, 1998), word naming and lexical decision time scores taken
from the English Lexicon Project (Balota et al., 2007), and measures of word
association strength derived from corpora like the BNC or COCA (Garner et al.,
2018). However, NLP annotations of lexical features do not generally measure
semanticity in language (with WordNet derived features being the exception).

In contrast to NLP annotations of lexical features, embedding models pro-
duce semantic representations of words and texts, but they do not explicitly mea-
sure features related to depth of lexical knowledge nor do they measure breadth
of lexical knowledge or core lexical properties. For instance, LSA, Word2vec, and
transformer models use word vectors to measure semantic similarity between
words and text segments. These techniques are quite good at uncovering semanti-
cally related words, predicting next words in sentences, and examining the overall
semantic content of a text. However, embedding models do not provide analytic
information about word frequency, the processing times for words, or core prop-
erties for words such as concreteness.

Much research has explored the use of lexical annotations to assess L2 lexical
knowledge. In the area of lexical acquisition Crossley, Salsbury, and McNamara
(2009) and Crossley, Salsbury, and McNamara (2010) used NLP annotations
of lexical sophistication and diversity calculated by Coh-Metrix (Graesser et al.,
2004) to longitudinally investigate various components of second language (L2)
lexical development (e.g., hypernymic word relations and polysemy). More
recently, Crossley, Skalicky, et al. (2019) investigated the relationship between lex-
ical salience, lexical frequency, and language development over time using the
Tool for the Automatic Analysis of Lexical Sophistication (TAALES; Kyle et al.,
2018). Other researchers have used web-based tools such as VocabProfile (Cobb,
n.d.) to explore lexical acquisition in response to specific activities. For instance,
Zaytseva et al. (2019) measured written and oral lexical production before and
after a 3-month study abroad experience using measures related to diversity,
sophistication, density and accuracy. They found that studying abroad led to
increased vocabulary in written samples more so than spoken samples, espe-
cially in terms lexical diversity. Sundqvist (2019) found that extramural gaming
improved measures of both productive and receptive vocabulary use.

NLP annotations of lexical features have also been used to predict speaking
proficiency in learner corpora. Lu (2012), for example, used the Lexical Complex-
ity Analyzer to successfully model the relationship between speaking proficiency
and indices related to lexical density, diversity, and sophistication. Biber et al.

Assessing receptive vocabulary using state-of-the-art natural language processing techniques [5]
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(2016), used the Biber Tagger (Biber, 1988) to predict the relationship between a
wide range of lexicogrammatical features and speaking quality scores in a large
corpus of oral standardized test responses. Studies have also modeled lexical
aspects of speaking proficiency using the Tool for the Automatic Analysis of Lex-
ical Sophistication (TAALES). For instance, Berger et al. (2019), examined the
relationship between judgements of speaking quality for a large corpus of L2
speech and lexical characteristics including contextual diversity and psycholin-
guistic word properties. Saito (2020) recently corroborated Kyle and Crossley
(2015)’s finding that L2 oral proficiency can be predicted with collocational quali-
ties captured by n-gram indices.

In comparison to NLP lexical annotations, embedding approaches that focus
on semantic relations like LSA, Word2vec, and BERT have seen relatively little
attention outside of automated essay scoring (see Ke & Ng, 2019, for a review).
In perhaps the earliest study, Crossley, Salsbury, & McNamara (2010) used LSA
to examine the development of semantic networks in L2 speakers finding that
semantic similarity scores among words increased as a function of time studying
English. In a more recent study, Lu and Hu (2021) explored contextual embed-
dings from BERT as a means of sense disambiguation and found that augmenting
existing measures of lexical sophistication with sense-aware frequency counts
improved predictive power for L2 English writing quality. Sun and Lu (2021)
utilized a vector space model (fastText, Bojanowski et al. 2017) to extrapolate
psycholinguistic dimensions of unseen words from smaller sets of labelled lex-
emes (i.e., psycholinguistic databases). They then measured variation within these
psycholinguistic properties in a large, longitudinal corpus (EFCAMDAT, Huang
et al., 2018) and found that the tested word properties can be inferred from
their positions in a vector space model. Monteiro (2020) developed L2 semantic
context indices from the EFCAMDAT corpus (Huang et al., 2018) using LSA
(Landauer & Dumais, 1997) and Word2vec (Mikolov et al., 2013) and reported
that L2 semantic indices were significantly predictive of L2 writing and how fast
L2 users judged a word to be a pseudoword or a real word. While work in this
area is scant, existing research suggests that there are strong relationships between
embeddings and analytic measures of lexical proficiency.

3. Current study

The purpose of the current study is to compare the predictive strength of NLP
lexical annotations to semantic embeddings to model vocabulary knowledge in
L2 learners. To demonstrate the state of the art in semantic embeddings, we com-
pare two semantic approaches (Word2vec embeddings, and transformer models)

[6] Scott Crossley and Langdon Holmes
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to NLP lexical annotations (e.g., word frequency, word associations, word con-
creteness). The goal is to examine how well automated approaches that incor-
porate lexical semanticity perform compared to non-semantic features that have
been commonly used in previous NLP studies. The research questions that guide
this study are:

1. Are there differences in accuracy for models predicting L2 receptive lexical
knowledge between NLP lexical annotations and semantic embedding
approaches?

2. What insights can lexical annotations and semantic embedding models pro-
vide about L2 lexical knowledge?

4. Method

4.1 Corpus

We used the International Corpus Network of Asian Learners of English
(ICNALE, Ishikawa, 2013) for this analysis. ICNALE (Ishikawa, 2013) includes
around 10,000 topic-controlled L2 writing and speech samples produced by col-
lege students and graduate students in ten countries/regions in Asia, namely
China, Hong Kong, Indonesia, Japan, Korea, Pakistan, the Philippines, Singapore,
Taiwan, and Thailand. ICNALE comprises four modules: Spoken Monologue,
Spoken Dialogue, Written Essays, and Edited Essays. For this study, we used the
ICNALE Written Essays which comprises 200- to 300-word essays written by
each participant on two topics: part-time jobs for college students and a ban
on smoking in restaurants. ICNALE includes writing samples for 2,600 English
language learners, with corresponding receptive vocabulary scores as calculated
using the English vocabulary size test (VST; Nation & Beglar, 2007). These scores
tap into learners’ receptive lexical proficiency, which is an important element of
L2 acquisition (David, 2008). Receptive vocabulary is a strong predictor of speak-
ing proficiency (Koisumi & In’nami, 2013) and potentially a more robust measure
of lexical knowledge than productive vocabulary (Webb, 2009).

We used data from one prompt (ban on smoking, SMK) to evaluate models
receptive vocabulary knowledge. One essay was removed for technical reasons
and, thus, our final corpus consisted of 2,599 essays written by 2,599 L2 English
learners from ten countries (see Table 1 for breakdown of essays by country). The
remaining ICNALE prompt (part time job, PTJ) comprises 2,600 essays written
by the same learners as the SMK prompt. These essays were used to augment the
data for the embedding models during training, but they were not used during the
development of the models to predict receptive vocabulary knowledge. The PTJ

Assessing receptive vocabulary using state-of-the-art natural language processing techniques [7]
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essays were used in training the embedding models to ensure the models had suf-
ficient data for successful training.

Table 1. Country information

Country Number essays Linguistic distance

China 400   1.5

Hong Kong 100    1.25

Indonesia 200 2

Japan 400 1

Korea 300 1

Pakistan 200    1.75

Philippines 200 2

Singapore 199   1.5

Thailand 400 2

Taiwan 200   1.5

4.2 Receptive vocabulary knowledge

Participants’ receptive vocabulary levels in ICNALE were assessed using an Eng-
lish vocabulary size test (VST) prior to writing their essay submissions. The VST
included fifty test items in the 1000–5000 word levels (ten items per 1000 word
band) from the monolingual version of VST (14,000 words; Nation & Beglar,
2007), which was delivered in a spreadsheet format (Ishikawa, 2013). When mul-
tiplied by 100, test scores represent the approximate number of word families
known by an individual. For example, a VST score of 33 suggests receptive knowl-
edge of approximately 3,300 words.

4.3 Lexical annotations

The Tool for the Automatic Analysis of Lexical Sophistication (TAALES; Kyle
et al., version 2.8) was used to measure the lexical features of each text.2 Each
of the following features were entered into a model to predict the participant’s
VST scores. Lexical features to examine depth and breadth of lexical knowledge
and core lexical items were selected based on previous studies that indicated
their strength in explaining L2 lexical development (Berger, Crossley, & Kyle,
2019; Berger, Crossley, & Skalicky, 2019; Crossley & Skalicky, 2019; Mostafa et al.,

2. TAALES is freely available at linguisticanalysistools.org

[8] Scott Crossley and Langdon Holmes
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2021). Indices were computed for both content and function words, and all mea-
sures selected were derived from either experimental studies, survey responses, or
corpus-based statistics.

Age of acquisition
Age of acquisition (AoA) indices approximate the average age that native English
speakers learn a word. Words that are acquired later in life can be considered
more sophisticated (e.g., repudiate) than words learned earlier in life (e.g., dog).
These indices are based on norms reported by Kuperman et al. (2012) and are
computed with lemmatized word forms.

Concreteness
Concreteness measures the tangibility of a word’s referent. More concrete words,
such as tree and table, refer to physical, perceptible objects. Less concrete words,
such as thought and ethical, refer to abstract concepts. Words with lower con-
creteness are considered more sophisticated. Scores were calculated using the
concreteness norms reported by Brysbaert et al. (2014) and are based on word
lemmas.

Word familiarity
Word familiarity measures how likely it is that a person would know the word.
Well known words that are more commonly used, such as breakfast, television,
and book, would have higher familiarity. Less commonly used words that may not
be known, such as egress and encephalon, would have lower familiarity. Scores
were calculated using the 4,943 lemmas of the MRC Psycholinguistic Database
(Wilson, 1988).

Word meaning fulness
Word meaningfulness measures the extent to which a word is related to other
words. It is based on human judgements of how related a target word is to other
words. Words that are less broadly meaningful like chagrin and astuteness will
activate fewer words. On the other hand, a word like cup will be more broadly
meaningful, activating related words such as soup, saucer, and coffee. Words with
lower meaningfulness are considered more sophisticated. Scores were calculated
using the 2,644 lemmas of the MRC psycholinguistic database (Wilson, 1988).

Lexical response times
Lexical response times measure the response time in milliseconds it takes for a
human participant to respond to a lexical stimulus. A single norm was included
from Balota et al. (2004), who reported participant’s response time when deciding

Assessing receptive vocabulary using state-of-the-art natural language processing techniques [9]
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whether a stimulus was a real word or a non-word. Longer lexical response times
indicate more sophisticated words, such as tangential. Shorter lexical response
times indicate less sophisticated words such as happy. Scores were calculated
using raw, unlemmatized word forms.

Word associations
Word associations measure the number of stimuli words that elicit the target word
in a word association task. Words with more associations, such as love (elicited by
181 different stimuli), are more readily accessible then words with fewer associa-
tions, such as bride (elicited by 6 stimuli). Words with fewer associations are con-
sidered more sophisticated. Scores were calculated using the associations norms
for 5,019 stimulus words and 10,470 response words reported in Nelson et al.
(2004) and found in the University of South Florida (USF) database.

Phonological distance
Phonological distance measures how similar in sound a word is to other words.
This is operationalized as the Levenshtein distances between a word and its 20
nearest phonological neighbors, where Levenshtein distance is the smallest num-
ber of insertions, deletions, and/or replacements that transform the target word
into one of its neighbors. Words that are more distant from their phonologi-
cal neighbors, such as cardiovascular, conspicuous, and calisthenic, are considered
more sophisticated than words with more phonologically similar neighbors, such
as fairies, wedded, and banter. Scores were calculated using the phonological dis-
tance norms reported by Balota et al. (2004) and are based on raw, unlemmatized
word forms.

Word frequency
Word frequency measures the frequency of words in a reference corpus. For this
study, the SUBTLEXus corpus (Brysbaert & New, 2009) was selected as the ref-
erence. SUBTLEXus is a 51-million-word corpus of American film and television
subtitles. Frequencies extracted from corpora that reflect spoken language tend
to align more closely with psycholinguistic norms developed in clinical settings
(Paetzold & Specia, 2016).

Collocation strength
Collocation strength measures assess the degree of association between two
words. The specific measure of association strength selected was Delta-P, which
is defined as the adjusted probability of a second word occurring, given the pre-
ceding word. The Delta-P measure was calculated for adjacent words (bigrams)
and utilizes the spoken section of the Corpus of Contemporary American English

[10] Scott Crossley and Langdon Holmes
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(Davies, 2010). Bigrams that exhibit weak association, such as interested for and
discovered around, can be considered less sophisticated than more strongly asso-
ciated bigrams, such as interested in and discovered that.

Contextual distinctiveness
Contextual distinctiveness measures the amount of information a word provides
about its context. The specific measure selected was McD (McDonald &
Shillcock, 2001), which is based on relative entropy or Kullback-Leibler diver-
gence. It measures the distance between Q, the probability distribution of all
possible word contexts in a corpus, and P, the probability distribution of word
contexts for the target word in the same corpus. If P provides little information
about its context (less distinctive), it will be less distant from Q. If P provides more
information about its context (more distinctive), it will be more distant from Q.
The more greatly these two probability distributions differ, the more contextually
distinct the word. Less distinctive words such as today are used in a variety of con-
texts. As a result of their contextual flexibility, they are considered less sophisti-
cated. More distinctive words such as lone provide more information about their
context and are considered more sophisticated. Scores were calculated using the
8,000 lexemes reported by McDonald and Shillcock, whose work was based on
the spoken BNC (2007).

4.4 Semantic embedding

We used both static and contextualized embedding approaches to extract seman-
tic information from each text. This information was then used to model partici-
pants’ VST scores. We implemented both approaches in the Python programming
language.3 Each approach is discussed below.

Doc2vec
Doc2vec is based on Word2vec (Mikolov et al., 2013), which is a method to rep-
resent semantic information as a vector of numbers that represent the distrib-
utional probabilities of words. Word2vec uses a shallow neural network with a
single hidden layer to learn the probability distributions of words in a corpus.
Using a continuous bag of words (CBOW) implementation, the neural network
learns to predict an unknown center word given the vector representations of the
surrounding words. At each pass, the values of the vectors are slightly adjusted
so that they perform better. Since a single vector is learned for all occurrences

3. The Python scripts used to develop these models are available at github.com/lang
donholmes/lexical_analysis

Assessing receptive vocabulary using state-of-the-art natural language processing techniques [11]

http://github.com/langdonholmes/lexical_analysis
http://github.com/langdonholmes/lexical_analysis


  S
hi

yu
 W

u 
(jb

id
18

65
02

) 
IP

:  
58

.1
96

.1
46

.5
5 

O
n:

 M
on

, 1
0 

O
ct

 2
02

2 
09

:2
6:

44

of the same word type, regardless of its syntactic function or the semantic sense
in which the word is used, the embeddings are considered static. Doc2vec (Le &
Mikolov, 2014) is an extension of Word2vec in which a single vector is trained to
represent a whole paragraph or an entire document. The Doc2vec implementa-
tion used in this study learns word representations and document representations
in parallel and is conceptually similar to the Word2vec CBOW method with an
additional paragraph vector included.4 At each pass, the shallow neural network
attempts to predict an unknown center word given the vector representations
of the surrounding words and a vector representation of the paragraph. Because
document vectors make available information about the types of words in a doc-
ument, they should be predictive in determining a writer’s lexical proficiency.

One problem with Word2vec and Doc2vec is that the semantic representa-
tions that result from the neural network model are difficult to explain and inter-
pret. The complexity of the neural network and opaqueness of the hidden layers
that inform the network mean that the decision processes that lead to the vector
representations are unavailable. Thus, if the model is biased or outdated, is based
on unjust decisions, or is based on incorrect assumptions, that data is not avail-
able for human interpretation.

For this study, we trained document embeddings with the Gensim (Rehurek
& Sojka, 2010) library in Python. We used NLTK’s (Bird et al., 2009) word space
tokenizer, and included all tokens produced by the tokenizer. We optimized two
important hyperparameters: vector size and epochs. Vector size determines the
dimensionality of the vector space, and in more practical terms, how many values
will constitute a document’s vector representation. While the original paper (Le
& Mikolov, 2014) used a vector length of 400, different vector lengths have been
shown to work better in different contexts (Lau & Baldwin, 2016). The epochs
setting determines how many times the network is trained on the entire dataset.
The original (Le & Mikolov, 2014) paper used 10–20 epochs, which means that
the model saw each text 10–20 times during training. In our instantiation, we
searched across 50, 100, 200, 400, 600, 800, 1000, and 1200 epochs. Epoch settings
within this range have been shown to be appropriate for smaller datasets (Lau &
Baldwin, 2016).

In order to provide an accurate evaluation of each method’s performance, we
partitioned our data into training, validation, and test sets. The SMK prompt was
divided into development and test sets following an 80/20 split. The development

4. Lau and Baldwin (2016) recommend ‘seeding’ Doc2vec algorithm with pre-trained word
vectors. However, we could locate no pre-trained vectors specific to L2 production. Thus, we
used the Doc2vec algorithm as implemented in the original paper (Le & Mikolov, 2014). In this
implementation, word vectors are learned alongside document vectors during training.

[12] Scott Crossley and Langdon Holmes
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set was augmented with 2,600 additional essays written in response to the PTJ
prompt. The augmented development set was then divided into training and val-
idation sets, also following an 80/20 split. The training and validation sets were
used during hyperparameter optimization and training. The test set was reserved
only for evaluating the model’s performance. We found that length 100 vectors
trained over 400 epochs produced the best results in our task with our training
data (see Figure 1). We trained document vectors on our training set using these
hyperparameters.

Figure 1. Results of grid search for optimal Doc2vec hyper parameters

Transformers
Transformer models differ from Word2vec models because they use neural net-
works with multiple hidden layers and include an attention mechanism. Trans-
former models like those found in Bidirectional Encoder Representations from
Transformers (BERT, Devlin et al., 2019) take into consideration the order in
which words appear (i.e., love and hate would be represented differently than hate
and love) and have attention mechanisms which allow input weights to be based
on importance in a task. Whereas Word2vec takes a small, predefined window of
context words into consideration, BERT’s self-attention mechanism allows it to
dynamically choose which words are important for its calculations from a wider
context window (the full length of the input). Contextual representations allow
BERT to extrapolate differences between the uses of the word bank in the sen-
tences The man robbed the bank and The man sat on the river bank. In Word2vec,

Assessing receptive vocabulary using state-of-the-art natural language processing techniques [13]



  S
hi

yu
 W

u 
(jb

id
18

65
02

) 
IP

:  
58

.1
96

.1
46

.5
5 

O
n:

 M
on

, 1
0 

O
ct

 2
02

2 
09

:2
6:

44

bank would have a single vector representation based on these two sentences
while BERT would have different representations for each use of the word.

Like the Doc2Vec model, BERT models are based on neural networks. How-
ever, BERT neural network models include millions of parameters that interact
in complex ways, making it even more difficult to fully explain or interpret what
the model is doing in each pass when compared to Doc2vec models. Thus, like
Doc2vec, the semantic representations that result from BERT do not lend them-
selves to interpretation, and it is difficult to assess whether the decision process
made by the model is appropriate and unbiased. Another problem that arises from
using transformer models like BERT is the immense cost associated with pre-
training a language model because of the size of the data, the layers of the neural
network, the bidirectional nature, and the attention mechanisms. Thus, unlike
Doc2vec, it is common practice to use pre-trained language models and finetune
them for different tasks. BERT, which we use in this study, was pre-trained with
a masked language modelling task on a corpus comprising 2.5 billion words from
Wikipedia and 800 million words from the BooksCorpus (Devlin et al., 2019).
Finetuning works by influencing the pretrained BERT’s weights and biases a small
amount to leverage knowledge about diverse language-related tasks. In compar-
ison to training a model from scratch, finetuning can be performed with signifi-
cantly less data and processing power. In practice, finetuning involves providing
the pre-trained transformer model with labelled training data that are specific to
the downstream task. The weights and biases are influenced through a procedure
called backpropagation. One caveat with finetuning is that it is not feasible to alter
the tokenization scheme. As a result, we used the same WordPiece tokenizer that
was utilized during BERT’s pre-training.

In order to assess the utility of large language models to predict lexical pro-
ficiency (as measured by VST), we finetuned the base, uncased version of BERT
(available through Huggingface Transformers, Wolf et al., 2020) to predict VST
score of the writer (after scaling VST scores to a floating point value between
−1 and 1). Huggingface includes a standardized ‘bert for sequence classification’
model, which works by adding a sequence classification ‘head’ on top of the pre-
trained BERT language model. The sequence classification head adds two layers
to the neural network: a dropout layer and a linear feed forward layer. The linear
layer was initialized with random values. During training, we backpropagate on
the entire network, including the additional linear layer.

The most important hyperparameters to set when optimizing the BERT
model are the learning rate, batch size, and number of epochs (Devlin et al., 2019).
Learning rate determines how dramatically the model adjusts to the new data. If
the model learns too quickly, it may ‘forget’ some of what it has already learned.
If it learns too slowly, it will fail to adapt to the data. Batch size determines how

[14] Scott Crossley and Langdon Holmes
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many documents are processed in parallel. Number of epochs, as with Doc2vec,
determines how many passes are made over the training set. While deep learning
libraries generally provide sensible defaults for the learning rate and all other
hyperparameters, it is best practice to empirically determine the correct learning
rate for each task and dataset (Kohavi & John, 1995). We followed the recommen-
dations of Devlin et al. (2019) and performed an exhaustive grid search over three
learning rates (2e-5, 3e-5, and 5e-5) and three epoch settings (2, 3, 4). We selected
the lower recommended batch size (16) apriori due to memory limitations on
our processing unit. The hyperparameters which produced the best model were
selected for finetuning (see Figure 2).

Figure 2. Results of grid search for optimal BERT hyper parameters

4.5 Statistical analysis

Linear models to predict student VST scores were developed using linguistic fea-
tures, Doc2vec, and BERT. For the linguistic features and Doc2vec models, we
constructed linear models in R (R Core Team, 2022) using the CARET package
(Kuhn, 2008). For the linguistic features model, we used a training and test set
that matched those used in the Doc2vec and BERT models to develop a linear
model. The linguistic feature model developed from the training set was then
applied to the held-out test set. For the Doc2vec model, we developed a linear
model using only the vectors inferred from the test data. For both the linguis-
tic features model and the Doc2vec model, estimates of model accuracy were
reported using summary statistics including root mean squared error (RMSE)

Assessing receptive vocabulary using state-of-the-art natural language processing techniques [15]
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and mean absolute error (MAE) between the observed and modeled holistic and
VST scores. R-squared (R2) is also reported and can be used to examine the
amount of variance explained by the developed model. Variable importance was
explained using the varImp function in CARET. Variable importance in varImp is
based on the absolute value of the t-statistic for each model parameter used.

Multi-collinearity between variables (i.e., variables that are highly collinear
and potentially measuring the same construct) can make interpreting variable
importance in linear models difficult. Thus, prior to developing our models, we
calculated correlations among the derived linguistic features and Doc2vec vectors.
If two or more variables correlated at r> .799, the variable(s) with the lowest cor-
relation with the VST scores was removed and the variable with the higher corre-
lation was retained.

As noted earlier, the BERT model was outfitted with a linear head as part
of its finetuning process, which allowed the finetuned BERT model to output its
predictions directly. Using the linear head of the BERT model, as compared to
extracting BERT embeddings and training a linear model separately, is a more
parsimonious use of data and the BERT model, since the linear layer is trained
during model finetuning. It is also the standard method of performing regression
and classification tasks with pre-trained language models. In practice, the fine-
tuned BERT model directly outputs a predicted VST score for each input text.
Before finetuning, VST scores were scaled to floating point values in the range
(−1.0, 1.0). BERT was then finetuned on the augmented (SMK training + PTJ)
development set. The performance of the finetuned model was evaluated on the
held out test set (20% of the SMK prompt), using the same summary statistics
RMSE, MAE, and R2.

5. Results

5.1 Lexical annotations model

Correlations indicated that our SUBTLEXus frequency measure was strongly
collinear with the Kuperman age of acquisition measure. Because age of acquisi-
tion reported a higher correlation with VST scores, the frequency measure was
removed from the linear model. A linear model for the training set using the
remaining nine lexical annotations reported RMSE =7.993, MAE= 6.419, r= .415,
R2 = .172, indicating that the linguistic features model explained 17% of the vari-
ance in the VST scores. The relative importance metrics indicate that the strongest
predictors of VST scores were word meaningfulness followed by word familiarity

[16] Scott Crossley and Langdon Holmes
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and age of acquisition. The weakest predictors were related to contextual diversity
and word association (see model parameters summarized in Table 2).

Table 2. Parameters for linguistic features model

Feature Co-efficient Variable importance

Intercept 33.504

Word meaningfulness (MRC) −2.292 4.821

Word familiarity (MRC) −0.994 1.950

Age of acquisition (Kuperman)  1.235 1.715

Lexical decision response time  0.495 0.956

Word concreteness (Brysbaert) −0.337 0.825

Word associations (USF)  0.334 0.694

Phonological neighbors −0.180 0.322

Contextual distinctiveness  0.083 0.196

Collocation strength (COCA spoken DP)  0.045 0.118

5.2 Doc2vec model

As expected, none of the length 100 Doc2vec vectors were multicollinear so all
vectors were entered into the linear model. A linear model for the test data using
the Doc2vec vectors reported RMSE= 8.641, MAE= 6.863, r =.410, R2 = .168, indi-
cating that the Doc2vec model explained 17% of the variance in the VST scores.
Because the vectors in the Doc2vec model are not interpretable, we do not report
their co-efficients or their variable importance.

5.3 BERT model

The finetuned BERT model predicted VST scores scaled to the range (−1.0, 1.0).
In order to make these results comparable to our other models, the predicted val-
ues were inverse scaled back to the original VST unit scale. The finetuned model,
when applied to the test set, reported RMSE= 7.127, MAE= 5.438, r= .567, R2 = .321,
indicating that the finetuned BERT model explained 32% of the variance in the
VST scores.

Assessing receptive vocabulary using state-of-the-art natural language processing techniques [17]
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5.4 Comparisons between models

We used Fisher r-to-z transformations to assess the significance of the difference
between the correlation coefficients reported for the linguistic feature, Doc2vec,
and BERT Models for the test sets (see Table 3). The results indicated that the
BERT model outperformed the linguistic features model and the Doc2vec model.
There were no differences between the linguistic features model and the Doc2vec
model.

Table 3. Fisher r-z transformations between models

Models z p

Linguistic –Features – Doc2vec 0.22 > .050

Linguistic –Features – BERT 7.26  < .001−

Doc2vec – BERT 7.48 < .001

6. Discussion

This study examined various NLP approaches to modeling receptive vocabulary
in L2 learners including state-of-the-art semantic embedding approaches. Specif-
ically, this study predicted the vocabulary size test scores for English language
learners using lexical lexical annotations, Doc2vec semantic representations, and
BERT semantic representations of the L2 learners’ essays. The developed models
explained between 17% and 32% of the variance in the VST scores with the low-
erest variance explained by the lexical annotations and Doc2vec models and the
highest variance explained by the BERT model. While lexical annotations that
explore breadth, depth, and core lexical knowledge features have become com-
monplace in many studies of L2 performance (Grant & Ginther, 2000; Graesser
et al., 2004; Koizumi & In’nami, 2013; Sundqvist, 2019), modeling lexical knowl-
edge based on semantic features is rare (cf. Monteiro, 2020; Sun & Lu, 2021;
Lu & Hu, 2021; Zhang et al., 2021). Additionally, little research has investigated
links between receptive and productive vocabulary as found in this study (Meara,
2010).

The results of the study indicate moderate links between lexical annotations
and semantic models based on Doc2vec and L2 receptive vocabulary knowledge
and strong links between semantic models based on BERT and L2 receptive
vocabulary performance. Overall, the findings help support the notion that L2
productive language features are associated with receptive vocabulary skills
(Webb, 2008). The strength of the BERT model in measuring reecptive vocabu-

[18] Scott Crossley and Langdon Holmes
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lary knowledge likely relates to enhanced models of semanticity based on neural
network models developed on large language corpora that include features related
to context and attention.

In the developed models, the lowest performance was reported for the
Doc2vec models, which performed slightly lower than the lexical annotation
model. A potential reason for the lower performance is that the model was trained
specifically on the ICNALE corpus. In some sense, training on the same data that
comprises the test set may be an advantage. However, semantic embedding mod-
els generally perform better when they are trained on larger amounts of data.
While the ICNALE corpus is large by L2 standards, it may be considered small in
terms of corpora from which language models are generally trained. However, it
should be noted that the ICNALE training set used in our analysis had roughly 1
million tokens, nearly twice as large as Lau and Baldwin’s (2016) smallest training
set. Additionally, the Doc2vec model for this study performed quite well consid-
ering it is a relatively simple and shallow network with no pretraining or finetun-
ing. This makes the Doc2vec model more nimble and less computationally heavy,
which should lead to faster run times with correspondingly smaller difference in
performance. However, explaining the Doc2vec results is problematic. The vec-
tors derived from Doc2vec used to predict VST scores relate to the semanticity
of the texts, but since the vectors are just numerical representations of seman-
ticity, they are impossible to interpret, which is a major limitation of a Doc2vec
approach. In practice, Doc2vec is good at predicting VST scores, but provides the
researcher and practitioner with little information about what aspects of seman-
ticity lead to a larger receptive vocabulary size.

The lexical annotation model also explained 17% of the variance in the VST
scores. The linear model indicated that the strongest predictors of receptive
vocabulary were related to word meaningfulness, familiarity, and age of acqui-
sition. This was followed by features that measured lexical decision response
time, word concreteness, and USF word associations. Weaker predictors included
phonological neighbors, contextual diversity, and collocation strength. In brief,
writers who produced words with fewer meaningful associations (as measured by
both MRC word meaningfulness scores and USF word association scores) and
words that were less familiar and concrete, acquired later, and took longer to rec-
ognize as scored higher on the VST. Overall, the profile of a learner that scores
higher on the VST is a writer that produces more complex lexical items while, at
the same time, produces phrases that adhere to expected multi-word structures.
Thus, we would expect that lexical acquisition equates to the production of more
sophisticated words (i.e., words that have fewer associations and are less familiar,
acquired later, less concrete, and take longer to process) while, at the same time,
mastering the expectations of multi-word units.

Assessing receptive vocabulary using state-of-the-art natural language processing techniques [19]
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Our BERT models, which represents semantic I in texts, performed signifi-
cantly better than the Doc2vec model and the lexical annotation model explain-
ing 32% of the variance in VST scores. The BERT model likely outperformed the
Doc2vec model because of the use of a pre-trained model based on over 3 billion
words and the attention mechnism contained within the model. The BERT model
also likely outperform Doc2vec because it includes more advanced approaches
such as finetuning and alternative pooling techniques. While our model pooled
the hidden state of the first token of the final layer, different combinations of hid-
den states (including averaging across layers, concatenating, etc.) could improve
this performance as could ensemble methods that combine different pre-trained
and finetuned language models together. Additionally, unlike Doc2vec, BERT has
been effectively applied to tasks such as syntactic dependency parsing that are not
exclusively lexical (Goldberg, 2019; Clark et al., 2019). With this consideration in
mind, it is likely that BERT is essentially capturing semantic information because
it was trained to predict word distributions in a corpus in a manner similar to
Word2vec. However, within that process it is also learning syntatic information
bringing BERT closer to understanding the nexus between lexis and syntax. How-
ever, unlike our lexical annotation model (and similar to our Doc2vec model), it is
difficult to interpret the semantic embeddings in the students’ texts that predicted
the VST scores because of the neural network approaches used in both Doc2vec
and BERT. These neural networks, based on their complexity, make explaining
model decisions extremely difficult. Even the smaller BERT model used here has
340 million parameters, which is small in size compared to more recent language
models (e.g., GPT-3 has over 175 billion parameters, Brown et al., 2020). Thus,
while the transformer models are more predictive, they are less interpretable. Like
the Doc2vec model, this is a major limitation because researchers and practition-
ers can glean little from the BERT model about what it means to have more or less
receptive vocabulary knowledge.

7. Conclusion

We find that state-of-the-art BERT models based on semantic embeddings out-
perform linguistic annotations and Doc2vec models in predicting L2 learners’
VST scores based on features found in the students’ writing. This finding helps
to support the strength and accuracy of semantic embedding approaches as well
as their generalizability across tasks when compared to linguistic feature models.
However, we also note a major drawback of semantic embedding models: inter-
pretability. While the linguistic features model performed statistically lower than
the BERT model, its output was understandable and easy to map onto existing
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theories and previous studies investigating L2 lexical knowledge. The same cannot
be said for the semantic embedding models, whose opaque output helps in label-
ing them as black boxes. As such, there is a trade-off between semantic embedding
models and the lexical features model in terms of model performance and trans-
parency (Došilović et al., 2018).

There are also limitations to the current study that go beyond model inter-
pretability. Some of these issues were discussed above (e.g., larger training sets
for Doc2vec models), but some issues are specific to the conducted analyses. For
instance, in this study we only focused on English and not other languages. Thus,
we have no real understanding if the results are generalizable beyond English.
One obstacle to generalizing findings to other languages is the massive number of
resources that have traditionally been necessary to develop linguistic annotation
tools for a specific language. These include part of speech taggers, dependency
parsers, lexical judgement databases (like ELP) and lexical synsets (like Word-
Net). Semantic embedding models like Doc2vec and BERT provide a partial solu-
tion to this concern because they require no hand coding, human judgments, or
rule-based systems. Given a large enough corpus, the models learn the seman-
ticity of a language unsupervised. Thus, future studies may be able to replicate
the semantic embedding findings reported here in other resource-rich languages
for which large enough training corpora (and compute) are available. Addition-
ally, if large enough L2 English corpora become available, transformer models
may be developed that purposefully incorporate the English production of non-
native speakers (i.e., L2 normed models). This may alleviate concerns that some
researchers hold (i.e., Ortega, 2016) about depending on NLP annotations based
on L1 norms.

Another limitation is that transformer models like BERT do not allow for the
inclusion of co-variates that might help explain linguistic knowledge because pre-
dictions are made using a linear head that is part of the finetuning process. For
example, the ICNALE corpus includes a number of demographic and individual
difference variables for each learner that could be included as co-variates in mod-
els. These include age and gender (for demographic information) and individual
difference features such as motivation strength (both integrative and instrumen-
tal) and learner backgrounds data such as grade level, academic background, fre-
quency of using English, experiences being taught by native speaker of English,
and country of origin. Many of these features may help to explain VST scores in
addition to the semantic embeddings reported by BERT, but they are impossible
to include in our modeling process. Additionally, models could have been tested
on country of origin to assess potential cross-linguistic influences, but the authors
of ICNALE (Ishikawa, 2013) warn against using country of origin as operational-
ized in ICNALE because VST scores are higher in the data for ESL outer circle

Assessing receptive vocabulary using state-of-the-art natural language processing techniques [21]
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countries (Hong Kong and Singapore) than for EFL expanding circle countries
(Japan and Thailand). Thus, proficiency level and L1 are strongly correlated and
any comparison based solely on L1 would be unprincipled.

Even considering their limitations, transformer models are state-of-the-art
and commonly used in fields as diverse as health, finance, military, transportation,
and security (Arrieta et al., 2020) because of their performance strengths. While
uncommon in L2 studies, this study shows their strength in prediction tasks of
interest to the L2 community. The likelihood of transformer models like BERT
becoming more mainstream in L2 studies is strong and will become stronger con-
sidering the push towards more interpretable AI (including transformer models)
in government, industry, and academia. Interpretable AI is necessary to ensure
that decisions made by models are justifiable (Gunning & Aha, 2019) and the
models allow for detailed explanations to increase human trust and understand-
ing (Zhu et al., 2018). As noted by Arrieta et al. (2020), developing interpretable
machine learning models can help detect and correct potential bias in training
sets, highlight small changes (i.e., perturbations) that might change predictions,
and help ensure a causality in model reasoning.

As transformer models become more interpretable and begin to tell us more
about the underlying cognitive processes of L2 acquisition, their uptake will likely
increase. Modified deep learning techniques like training neural networks to asso-
ciate labelled nodes with known semantic ontologies, generate examples and/
or clusters from unlabeled and/or prominent nodes to help with semantic inter-
pretation, and identify which architectures, parameters, and training lead to the
most interpretable models (Gunning et al., 2019) should make the semantic out-
put of transformer models more actionable for L2 researchers and practitioners.
Once available, interpretable semantic representations for L2 learners will help L2
researchers develop models of L2 knowledge and development related to mean-
ing, intention, inference, and pragmatics, all areas that are difficult, if not impos-
sible, to model computationally. These models should have immediate impacts in
the language learning classroom or learning system.

From a theory-driven perspective, we do not recommend that researchers
use transformer language models in place of existing NLP annotation to analyze
learner language, especially if interpretation of output is critical. However, in
cases where sufficient data is available, computational resources exist, and inter-
pretability is not a concern, embedding-based approaches to NLP offer appealing
utility for a wide variety of language analysis tasks, so long as researchers
acknowledge and manage the potential for bias in these models. Doc2vec and
other static embedding models may also prove useful to some research projects
while requiring many fewer computational resources. We are optimistic that
future research will develop creative methodologies that leverage embedding
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models while minimizing their limitations. Meanwhile, NLP annotations of lex-
ical features continue to provide a useful and interpretable means of studying
learner language.
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